Functionality preservation with enhanced mechanical integrity in the nanocomposites of the metal–organic framework, ZIF-8, with BN nanosheets
نویسندگان
چکیده
Metal–organic frameworks (MOFs) are an important class of materials with potential applications in gas storage and catalysis. One of the key challenges for their practical applications is low mechanical robustness and stability as they contain signicant structural porosity and are typically fragile in nature. One possible way of overcoming this drawback is through compositing with a two-dimensional nanomaterial such as BN which has high mechanical strength. Such an effort to improve the mechanical properties of MOFs has not been reported hitherto. We have investigated, for the rst time, the possibility of enhancing the mechanical properties of a MOF, in the case of microporous zeolitic imidazolate framework ZIF-8. For this purpose, we prepared composites where ZIF-8 is chemically bonded to few-layer BN. Incorporating the properties of both BN and the MOF, especially to improve the mechanical strength of the latter, is indeed novel. Metal–organic frameworks (MOFs) and boron nitride both possess novel properties, the former associated with microporosity and the latter with good mechanical properties. We have synthesized composites of the imidazolate based MOF, ZIF-8, and few-layer BN in order to see whether we can incorporate the properties of both these materials in the composites. The composites so prepared between BN nanosheets and ZIF-8 have compositions ZIF–1BN, ZIF–2BN, ZIF–3BN and ZIF–4BN. The composites have been characterized by PXRD, TGA, XPS, electron microscopy, IR, Raman and solid state NMR spectroscopy. The composites possess good surface areas, the actual value decreasing only slightly with the increase in the BN content. The CO2 uptake remains nearly the same in the composites as in the parent ZIF-8. More importantly, the addition of BN markedly improves the mechanical properties of ZIF-8, a feature that ismuch desired inMOFs. Observation ofmicroporous features alongwith improvedmechanical properties in a MOF is indeed noteworthy. Such manipulation of properties can be profitably exploited in practical applications.
منابع مشابه
Porous Proton Exchange Membrane Based Zeolitic Imidazolate Framework-8 (ZIF-8)
Metal-organic frameworks (MOFs) are emerging material class for the past few years due to its tailorability characteristics for various applications. However, the research and development (R&D) of MOFs is still scarce for fuel cell system. This may be due to the several difficulties faced in selecting a good MOFs-based electrolyte, which consequently affects both proton conduction and methanol ...
متن کاملEnhanced Phtocatalytic Activity of α-Fe2O3 Nanoparticles Using 2D MoS2 Nanosheets
α‒Fe2O3/MoS2 nanocomposites were synthesized via hydrothermal method and characterized in terms of crystal structure, particle size and morphology, elemental purity and optical properties. Results confirmed the formation of α‒Fe2O3/MoS2 nanocomposites containing hematite nanoparticles with average diameter of 40 nm and MoS2 nanosheets with hexagonal crystal structure and sheet thickness o...
متن کاملOptimization of solvothermally synthesized ZIF-67 metal organic framework and its application for Cr(VI) adsorption from aqueous solution
In this study, ZIF-67 was synthesized through solvothermal method to remove Cr(VI) ions from aqueous solution. To improve the structural properties of ZIF-67 and its adsorption capacity, optimization of the synthesis conditions was carried out based on maximum Cr(VI) uptake. From experiments, the optimum condition was revealed as solvent: metal ion molar ratio of 4.6:1, ligand: metal ion molar ...
متن کاملOne-pot synthesis of folic acid encapsulated upconversion nanoscale metal organic frameworks for targeting, imaging and pH responsive drug release.
In this work, a new theranostic nanoplatform is developed to construct an anticancer drug carrier by integrating the distinct advantages of upconversion nanoparticles (UCNPs) and metal organic frameworks (MOFs) encapsulated with a targeting ligand. Here NaYF4:Yb3+,Er3+ is chosen as an upconversion nanoparticle for its high luminescence properties. Then, folic acid encapsulated Zeolitic Imidazol...
متن کاملFabrication of cu based metal-organic framework / graphene Nanocomposite and study electrochemical performance in supercapacitors
High conductivity and high level of electrolyte availability are the main requirements of active materials used in supercapacitors (SCs) to achieve high electrochemical efficiency. In recent years, metal-organic frameworks (MOFs) have been used as electrode materials for SCs due to their suitability of porosity and high surface area. However, using single-component MOFs in supercapacitors resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014